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Abstract

The mutual information for the binary symmetric channel as well as for
the discrete symmetric channel consisting of 4-input/output (I/O) symbols
is explicitly calculated using the generalized second law of thermodynamics
which was recently proposed by the first two authors. For equiprobable I/O the
mutual information of the examined channels has a very simple thermodynamic
form as a function of the internal energy of the channel. We prove that this
simple form of the mutual information governs the class of discrete memoryless
symmetric communication channels with equiprobable I/O symbols.

PACS numbers: 05.70.−a, 89.70.−a, 89.70.Cf, 89.70Kn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The current scientific conception is that the theory of information is a creature of mathematics
and has its own vitality independent of the physical laws of nature [1]. The first two authors
have recently proved [2, 3] that the principal quantity in the theory of information, the mutual
information, can be reformulated as a consequence of the fundamental laws of nature—the
laws of thermodynamics. This corollary was originally exemplified for the Gaussian noisy
channel.

The generic problem in information processing is the transmission of information over
a noisy channel [4–6]. This central paradigm of information theory can be mathematically
abstracted for having two random variables X and Y representing the desired information
and its noisy replica, respectively. Noisy transmission can occur either via space from one
geographical point to another, as happens in communications, or in time, for example, when
sequentially writing and reading files from a hard disk in the computer.

Mutual information, I (X;Y ), quantifies the amount of information in common between
two random variables and it is used to upper bound the attainable rate of information transferred
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across a channel. To put it differently, mutual information measures the amount of information
that can be obtained about one random variable (channel input X) by observing another
(output Y). A basic property of the mutual information is that I (X;Y ) = H(X) − H(X|Y ),
where H(·) is the information (Shannon) entropy [1]. It measures the amount of uncertainty in
a random variable, indicating how easily data can be losslessly compressed. Hence knowing
Y, we can save an average of I (X;Y ) bits in encoding X compared to not knowing Y.

As recently shown by the first two authors [2, 3], the modeling of the Gaussian channel
as a thermal system requires the generalization of thermodynamics to include temperature-
dependent Hamiltonians, as well as the redefinition of the notion of temperature. The
generalized second thermodynamic law was proven to have the following form:

dS = dQ

T
− 1

T

〈
dE(X)

dT

〉
dT , (1)

where 〈·〉 denotes averaging over the Boltzmann distribution.
The generalized second law of thermodynamics (1) has a clear physical interpretation.

For simplicity, let us assume that an examined system is characterized by a comb of discrete
energy levels E1, E2, . . . , see figure 1(a) . The heat absorbed into the T-dependent system
has the following dual effect: a first contribution of the heat, dU − 〈dE(X)/dT 〉dT , increases
the temperature of the system, figure 1(b), while the second contribution, 〈dE(X)/dT 〉dT ,
goes for shifting the energy comb, figure 1(c). However, the shift of the energy comb does
not affect the entropy, since the occupation of each energy level remains the same, and the
entropy is independent of the energy values which stand behind the labels E1, E2, . . . . The
change in the entropy can be done only by moving part of the occupation of one tooth of the
energy comb to the neighboring teeth, figure 1(b). Hence, the effective heat contributing to the
entropy is dQ − 〈dE(X)/dT 〉dT , and this is the physical explanation to the generalized
second law (1). A schematic picture of the communication heat engine is depicted in
figure 2, where the heat is devoted to the change of the Hamiltonian (without altering the
thermodynamic entropy) denoted by the term ‘working channel’. Note that for T-independent
Hamiltonians the traditional picture of the heat engine is recovered as well as the traditional
second thermodynamic law [7–9].

Using the generalized second law of thermodynamics, (1), one can show [2, 3] that the
generalized expression for the mutual information is given by

I = −γU(γ )|β0 +

〈∫ β

0

(
U(γ, y) + γ

〈
dE

dγ

〉
x|y

)
dγ

〉
y

. (2)

Throughout this contribution the expectation operation 〈·〉 is taken with respect to its subscript.
Note that this thermodynamic expression for the mutual information holds for any channel
which can be described by a thermal system exhibiting quasi-static heat transfer. For the
Gaussian channel with a standard Gaussian input and signal-to-noise ratio, snr, one can
show [2, 3] that the celebrated formula for the Shannon capacity [1] is obtained from (2),
I (X;Y ) = 1

2 log (1 + β), where β = snr.

2. Binary symmetric channel

We now turn to derive the mutual information for the archetypal discrete memoryless channel,
the binary symmetric channel (BSC), with input x and output y. The input’s prior distribution
obeys P(x = 1) = P(x = −1) = 1/2 and the probability for a symbol to flip during the
transmission is denoted by δ, P(y = ±|x = ∓) = δ, see figure 3. Hence, the conditional
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Figure 1. A system consisting of a discrete energy comb (levels), εm, with the corresponding
degeneracy �(εm) which increases with the energy. For simplicity of presentation we assume that
the system is occupying only one tooth of the comb, depicted by a red tooth in (a). As heat is
absorbed into the system, the system can either increase the temperature by jumping to the next
tooth of the comb, (b), or shift the energy comb (c). Note that only the jump to the next tooth, (b),
changes the entropy of the system, where in (c) the entropy remains the same as in (a).

Working 
Channel

dT
dT

d

dQ dT
dT

dE
dQ

HT cT

Figure 2. A schematic communication heat engine. H/C denote hot/cold temperatures.

probability of the output given the input is

P(y|x) = δ
1−xy

2 (1 − δ)
1+xy

2 = exp

[
xy

2
ln

(
1 − δ

δ

)
+

1

2
ln(δ(1 − δ))

]
. (3)
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Figure 3. The input/output transition probabilities for the binary symmetric channel.

A comparison of the channel’s a posteriori probability distribution, given by Bayes’ law

P(X = x|Y = y) ∝ P(Y = y|X = x) (4)

with the Boltzmann distribution law yields the following mapping of the energy and the inverse
temperature, β, of the equivalent thermal system

E = −xy

2
− 1

2β
ln(δ(1 − δ)), β = ln

1 − δ

δ
. (5)

Note that since the inverse temperature, β(δ), is positive, then δ = 1/(1 + exp(β)) < 1/2
[10, 11]. This definition of δ coincides with two limiting cases. For δ = 1/2, β = 0(T → ∞),
where for δ = 0, β → ∞ (T = 0). Using 〈x〉x|y = y(1 − 2δ), one can find that the internal
energy is given by

U(β) = −1 − 2δ

2
− 1

2
+

ln(1 + exp(β))

β
. (6)

Note that for the BSC specifically the internal energy is independent of y due to the binary
nature of the input/output (I/O) symbols. Similarly to the internal energy on can find〈

β
dE

dβ

〉
x|y

= − ln(1 + exp(β))

β
+

exp(β)

1 + exp(β)
. (7)

It is now easy to verify that the second term of the generalized mutual information, (2),
vanishes,

U(β) +

〈
β

dE

dβ

〉
x|y

= 0, (8)

and the mutual information for the equiprobable I/O BSC (which is also the Shannon capacity
of the BSC in general) has a very simple form given explicitly (in nats) by

I = −γU(γ )|β0 = β(1 − δ) − ln(1 + exp(β)) + ln 2

= (1 − δ) ln(1 − δ) + δ ln(δ) + ln 2 = ln 2 − HB(δ), (9)

where HB(·) denotes the binary entropy. Hence, the mutual information for the BSC is
recovered using the generalized second thermodynamic law. Note that in contrast to the
Gaussian channel, in the BSC case the second term of the mutual information, (2), vanishes,
and the mutual information is proportional to the internal energy

I = −γU(γ )|β0 . (10)
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Figure 4. The input/output transition probabilities for a channel of 4-I/O symbols.

3. 4-I/O symbols

Is this simple thermodynamic form, (10), a coincidence of the BSC only or does it occur for the
general class of discrete memoryless channels? To find the answer to this interesting question,
we first turn to discuss in detail the case of 4-I/O symbols. The input is represented by two
binary units x1 and x2, and similarly the output units are y1 and y2. We assume that the 4-input
symbols are equiprobable. The conditional probability of P(y1, y2|x1, x2) obeys the following
symmetry. The probability that both output units are equal to the input units, respectively, is
1 − δ, the probability that only one unit is equal is εδ (ε � 1), and the probability that the two
output units differ from the input is δ(1 − 2ε) (figure 4). Hence,

P(y|x) = (1 − δ)
1+x1y1

2
1+x2y2

2 (εδ)
1+x1y1

2
1−x2y2

2 (εδ)
1−x1y1

2
1+x2y2

2 (δ − 2εδ)
1−x1y1

2
1−x2y2

2 , (11)

and it is now easy to verify that

P(X = x|Y = y) ∝ exp

{
x1y1 + x2y2

4
ln

(
1 − δ

δ(1 − 2ε)

)
+

1

4
ln((1 − δ)δ3ε2(1 − ε))

+
x1x2y1y2

4
ln

[
1 − δ

δ

(1 − 2ε)

ε2

]}
.

Similarly to (5) one can find in this case

E = −1

4
(x1y1 + x2y2 + x1x2y1y2) +

1

4β
ln((1 − δ)δ3) +

1

4β
f (x1y1, x2y2, ε), (12)

where

f � (x1y1 + x2y2) ln(1 − 2ε) − x1x2y1y2 ln

(
1 − 2ε

ε2

)
− ln(ε2(1 − 2ε)), (13)

β = ln

(
1 − δ

δ

)
, (14)
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Figure 5. The mutual information as a function of δ and ε for the discussed case of 4-I/O symbols.

and the two limiting cases are δ = 3/4 and ε = 1/3 (β = 0) and δ = 0 (β → ∞). Using the
following conditional expectations,

〈xm〉xm|ym
= ym(1 − 2δ + 2εδ) = ym(1 − 2δ(1 − ε)), 〈x1x2〉x1x2|y1y2 = y1y2(1 − 4εδ),

(15)

one can find that the internal energy

U(β) = −3

4
+ δ − ln((1 − δ)δ3)

4β
− δ

β
[2ε ln(ε) + (1 − 2ε) ln(1 − 2ε)], (16)

and again verify that

U(β) + β

〈
dE

dβ

〉
x|y

= 0. (17)

Hence the mutual information has again the simple form, (10), and is given explicitly by

I = 2 ln 2 + (1 − δ) ln(1 − δ) + 2εδ ln(εδ) + δ(1 − 2ε) ln((1 − 2ε) δ), (18)

which can be verified (by direct computation of the mutual information out of its definition)
to have the correct form. The mutual information as a function of (δ, ε) is depicted in
figure 5, where the mutual information I = 0 for δ = 3/4 and ε = 1/3.

4. Equiprobable discrete memoryless symmetric channels

For the general case of discrete memoryless symmetric channels with 2n equiprobable input
symbols, the conditional probabilities have the following form:

P(y1, . . . , yn|x1, . . . , xn) = δε(x1y1, . . . , xnyn), (19)

and one can verify that similarly to (5) and (12) the energy is given now by

E = − 1

2n

[−1 + �n
k=1(1 + xkyk)

] − 1

2nβ
ln((1 − δ) δ2n−1)

+
1

β
fn({xiyi}, {ε(x1y1, . . . , xnyn)}), (20)
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where fn is a function of the number of symbols only. Now it is clear that

2n

(
U(β) +

〈
β

dE

dβ

〉
x|y

)
= −〈−1 + �n

k=1(1 + xkyk)〉xk |yk
− d ln((1 − δ)δ2n−1)

dδ

dδ

dβ
,

where as in (5) and (12) β = ln((1 − δ)/δ) and dδ/dβ = −δ(1 − δ). Hence

2n

(
U(β) +

〈
β

dE

dβ

〉
x|y

)
= −〈−1 + �n

k=1(1 + xkyk)〉xk |yk
+ 2n − 1 − 2nδ

= −〈�n
k=1(1 + xkyk)〉xk |yk

+ 2n(1 − δ) = 0. (21)

The identity to 0 is a result of 〈�n
k=1(1 + xkyk)〉xk |yk

which is equal to the trace of the
conditional probability, (19). Hence we proved that for a general memoryless symmetric
channel consisting of 2n equiprobable I/O symbols

I = −γU(γ )|β0 , U(β) +

〈
β

dE

dβ

〉
x|y

= 0. (22)

Note that the identity I = −γU(γ )|β0 is in contrast to the case of a Gaussian channel with
Bernoulli-1/2 or Gaussian inputs [2, 3].

5. Conclusion

In this contribution it is shown that the mutual information for the class of discrete
memoryless symmetric communication channels can be explicitly derived via thermodynamic
argumentation and a recent generalization of the second law of thermodynamics for
temperature-dependent energy functions. For equiprobable I/O the mutual information of the
examined discrete channels gets a very simple thermodynamic form, −γU(γ )|β0 , providing
an intriguing relation between information theory and thermodynamics.
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[7] Carnot S 1824 Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette
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